A multispecific quintet of aromatic aminotransferases that overlap different biochemical pathways in Pseudomonas aeruginosa.

نویسندگان

  • R J Whitaker
  • C G Gaines
  • R A Jensen
چکیده

Pseudomonas aeruginosa possesses dual enzymatic sequences to both L-phenylalanine and L-tyrosine, a biosynthetic arrangement further complicated by the presence of five aromatic aminotransferases. Each aminotransferase is capable of transamination in vitro with any of the three keto acid intermediates in the aromatic pathway (phenylpyruvate, 4-hydroxyphenylpyruvate, or prephenate). The fractional contribution of these aminotransferases to particular transamination reactions in vivo can best be approached through the systematic and sequential elimination of individual aminotransferase activities by mutation. A program of sequential mutagenesis has produced two aminotransferase-deficient mutations. The first mutation imposed a phenotype of bradytrophy for L-phenylalanine (doubling time of 2.4 h in minimal salts/glucose medium compared to a 1.0-h doubling time for wild type). This mutant completely lacked an enzyme denoted aminotransferase AT-2. A genetic background of aminotransferase AT-2 deficiency was used to select for a second mutation which produced a phenotype of multiple auxotrophy for L-phenylalanine, L-aspartate, and L-glutamate. The double mutant completely lacked activity for aromatic aminotransferase AT-1 in addition to the missing aminotransferase AT-2. Enzymes AT-1 (Mr = 64,000) and AT-2 (Mr = 50,000) were readily separated from one another by gel filtration and were individually characterized for pH optima, freeze-thaw stability, heat lability, and molecular weight. The phenotypic and enzymological characterizations of the aminotransferase mutants strongly support the primary in vivo role of enzyme AT-2 in L-phenylalanine and L-tyrosine biosynthesis, while enzyme AT-1 must primarily be engaged in L-aspartate and L-glutamate synthesis. The substrate specificities and possible in vivo functions for AT-3, AT-4, and AT-5 are also considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PhhC is an essential aminotransferase for aromatic amino acid catabolism in Pseudomonas aeruginosa.

The phhC gene of Pseudomonas aeruginosa encodes a protein which is a member of the Family I aminotransferases. At high expression levels in the heterologous Escherichia coli system, PhhC can compensate for the absence of AspC (which functions in L-aspartate biosynthesis) and TyrB (which functions in aromatic biosynthesis). In the native organism, PhhC is essential for catabolism of either L-tyr...

متن کامل

Biochemical and computational study of an alginate lyase produced by Pseudomonas aeruginosa strain S21

Objective(s): Alginates play a key role in mucoid Pseudomonas aeruginosa colonization, biofilm formation, and driving out of cationic antibiotics. P. aeruginosa alginate lyase (AlgL) is a periplasmic enzyme that is necessary for alginate synthesis and secretion. It also has a role in depolymerization of alginates. Using AlgLs in cystic fibrosis patients along with anti...

متن کامل

Quinoprotein alcohol dehydrogenase from ethanol-grown Pseudomonas aeruginosa.

Cell-free extracts of Pseudomonas aeruginosa strains, grown on ethanol, showed dye-linked alcohol dehydrogenase activities. The enzyme responsible for this activity was purified to homogeneity. It appeared to contain two molecules of pyrroloquinoline quinone per enzyme molecule. In many respects, it resembled other quinoprotein alcohol dehydrogenases (EC 1.1.99.8), having a substrate specificit...

متن کامل

Dual enzymatic routes to L-tyrosine and L-phenylalanine via pretyrosine in Pseudomonas aeruginosa.

Pretyrosine, an intermediate of L-tyrosine biosynthesis in blue-green algae, was found to be enzymatically formed and utilized in Pseudomonas aeruginosa. The enzymology and regulation of aromatic biosynthesis were re-evaluated in the context of these new findings, Four species of aromatic aminotranaferase were separated and partially purified. Each was reactive with prephenate, phenylpyruvate, ...

متن کامل

Enzymological basis of reluctant auxotrophy for phenylalanine and tyrosine in Pseudomonas aeruginosa.

Dual biosynthetic pathways to L-phenylalanine and Ltyrosine exist in Pseudomonas aeruginosa (Patel, N., Pierson, D. L., and Jensen, R. A. (197’7) J. Biol. Chem. 252, 5839-5846). Tightly blocked phenylalanine or tyrosine auxotrophs are not obtained as the result of single mutations. Presumably the presence of a mutation that interrupts one pathway is masked by the presence of the alternative pat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 257 22  شماره 

صفحات  -

تاریخ انتشار 1982